Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Gut Microbes ; 13(1): 1984105, 2021.
Article in English | MEDLINE | ID: covidwho-1462225

ABSTRACT

Infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Angiotensin-converting enzyme 2 (Ace2) is expressed in the gastrointestinal (GI) tract and a receptor for SARS-CoV-2, making the GI tract a potential infection site. This study investigated the effects of commensal intestinal microbiota on colonic Ace2 expression using a humanized mouse model. We found that colonic Ace2 expression decreased significantly upon microbial colonization. Humanization with healthy volunteer or dysbiotic microbiota from irritable bowel syndrome (IBS) patients resulted in similar Ace2 expression. Despite the differences in microbiota, no associations between α-diversity, ß-diversity or individual taxa, and Ace2 were noted post-humanization. These results highlight that commensal microbiota play a key role in regulating intestinal Ace2 expression and the need to further examine the underlying mechanisms of this regulation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Colon/metabolism , Gastrointestinal Microbiome , Animals , Colon/microbiology , Dysbiosis , Gene Expression Regulation , Germ-Free Life , Humans , Inflammatory Bowel Diseases/microbiology , Mice , Receptors, Virus/metabolism , SARS-CoV-2
3.
Int Immunol ; 33(12): 787-790, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1398105

ABSTRACT

Dysbiosis is alterations in the microbial composition compared with a healthy microbiota and often features a reduction in gut microbial diversity and a change in microbial taxa. Dysbiosis, especially in the gut, has also been proposed to play a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. A body of evidence has shown that intestinal polymeric immunoglobulin A (IgA) antibodies are important to regulate the gut microbiota as well as to exclude pathogenic bacteria or viral infection such as influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) at mucosal sites. Since the 1970s, trials for oral administration of therapeutic IgA or IgG have been performed mainly to treat infectious enteritis caused by pathogenic Escherichia coli or Clostridium difficile. However, few of them have been successfully developed for clinical application up to now. In addition to the protective function against intestinal pathogens, IgA is well known to modulate the gut commensal microbiota leading to symbiosis. Nevertheless, the development of therapeutic IgA drugs to treat dysbiosis is not progressing. In this review, the advantages of therapeutic IgA antibodies and the problems for their development will be discussed.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Immunoglobulin A/therapeutic use , Immunomodulating Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Intestines/drug effects , Animals , Bacteria/immunology , Dysbiosis , Host-Pathogen Interactions , Humans , Immunoglobulin A/adverse effects , Immunomodulating Agents/adverse effects , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Species Specificity
4.
Virus Res ; 286: 198103, 2020 09.
Article in English | MEDLINE | ID: covidwho-669613

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a major pandemic called coronavirus disease 2019 (COVID-19) that has created unprecedented global health emergencies, and emerged as a serious threat due to its strong ability for human-to-human transmission. The reports indicate the ability of SARS-CoV-2 to affect almost any organ due to the presence of a receptor known as angiotensin converting enzyme 2 (ACE2) across the body. ACE2 receptor is majorly expressed in the brush border of gut enterocytes along with the ciliated cells and alveolar epithelial type II cells in the lungs. The amino acid transport function of ACE2 has been linked to gut microbial ecology in gastrointestinal (GI) tract, thereby suggesting that COVID-19 may, to some level, be linked to the enteric microbiota. The significant number of COVID-19 patients shows extra-pulmonary symptoms in the GI tract. Many subsequent studies revealed viral RNA of SARS-CoV-2 in fecal samples of COVID-19 patients. This presents a new challenge in the diagnosis and control of COVID-19 infection with a caution for proper sanitation and hygiene. Here, we aim to discuss the immunological co-ordination between gut and lungs that facilitates SARS-CoV-2 to infect and multiply in the inflammatory bowel disease (IBD) and non-IBD patients.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Dysbiosis/immunology , Gastrointestinal Tract/immunology , Inflammatory Bowel Diseases/immunology , Lung/immunology , Pneumonia, Viral/immunology , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Dysbiosis/drug therapy , Dysbiosis/microbiology , Dysbiosis/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Gene Expression , Host-Pathogen Interactions/immunology , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/virology , Lung/drug effects , Lung/microbiology , Lung/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL